Dental Radiograph Units:
Radiographic exposure is controlled by 3 components: kVp (kilovolt peak), MA (milliamperage), and exposure time. KVP controls the “quality” of the x-ray beam. This is the power of each particular x-ray particle which controls the penetration of the beam through tissues.

The quantity of the exposure is controlled by MA and time of exposure. The higher the MA, the more X-rays produced over the time period. Multiply this number by the exposure time and you will get the total number of x-ray units.

Since there is not a significant amount of variation of tissues in oral radiology, the KVP and MA are set constant on dental radiology units. The only variable factor is time. This is measured in seconds or pulses. One pulse is equal to 1/60 of a second. Most standard (human) dental radiology units have a digital control for the exposure and it is set by the operator based on a technique chart. Recently, however, veterinary specific machines have become available which has a computer that sets the exposure based on the size of the patient, the speed of dental film used, and the particular object tooth. This can take a lot of the guesswork out of the exposure setting. However, with a little experience and practice, it is easy to figure out a setting.

Dental Radiographic Film:
Dental film is non-screen film. This means that it is directly exposed by the x-ray and does not require an intensifying screen. This gives much more detail than standard radiographic film, but requires a higher amount of exposure. It is packaged in its own paper or plastic sleeve, to protect it from light and the oral environment.

There are two types of dental film commonly used in dental radiology. These are Ultra-speed “D” and Ektaspeed “E” film. Recently “F” speed film has become popular. The difference is in the size of the silver halide crystals and secondary to this the amount of exposure required to expose the dental film. “E” speed film requires approximately ½ the amount of radiation for exposure than “D” speed film, and “F” speed even less. This decreases exposure to the patient and staff as well as decreases the wear and tear on the x-ray unit.

There is a slight decrease in resolution with faster films due to the larger crystal size, but according to most experts, the difference is negligible. Therefore, it is recommended in human dentistry to use “E or F” speed to decrease exposure time. They are more technique sensitive, however, in both the exposure and development of the image. This may be frustrating for the novice, therefore it is generally recommended that practitioners start with “D” speed and advance to
“E or F” speed when they are more comfortable with the settings and positioning.

There are several different sizes of dental film available (4, 3, 2, 1, and 0). The most common sizes used in veterinary medicine are 4, 2, and 1. Size 3 are bite wings and are generally not used in veterinary medicine. Size 4 (occlusal) film is the largest available, it is used mostly in large breed dogs or when taking whole mouth radiographs. For small dogs and cats and most any single tooth radiograph, size 2 (standard) is commonly used. For the mandibular first and second premolars, and very small cats and puppies size 1 (or 0) (periapical) are used.

Another consideration in selecting film size is cost. Size 4 film is about 3 times the cost of size 2. Therefore, if you can use a size 2, it is recommended. However, it is much easier to position size 4 films, allowing for much more latitude in positioning. This will result in less retakes. Therefore, the less experienced may consider practicing with size 4 film and graduating to size 2 when a level of skill is obtained.

Digital Dental Radiology: There are numerous human veterinary digital systems. These are excellent means of obtaining dental radiographs. The only major problem currently is the lack of a number 4 sensor. The major advantages to these systems are the decrease in radiation exposure, rapidity of the development, and that you can reposition the sensor if the view is not correct the first time. There is one company, however which makes a size 4 phosphor plate (CR).

Taking a dental radiograph:
Step 1: Patient positioning
Position the patient so that the area of interest is convenient to the radiographic beam. In general this is where the object is “up”. For maxillary teeth, the patient should be in ventral recumbency. For mandibular canines and incisors the pet should be in dorsal recumbency. Finally, for maxillary cheek teeth, the patient should be in lateral recumbency with the affected side up. This being said, in our practice virtually all radiographs are exposed in lateral recumbancy. This takes some getting used to, but decreases the number of times a patient must be rolled when doing surgical or endodontic procedures.

Step 2: Film Placement within the patient’s mouth
There is an embossed dot on the film. The convex side of this should be placed towards the x-ray beam. In most films, this side is pure white. The opposite or “back” side of the film will usually be colored (purple or green). Place the film in the mouth so that the entire tooth (crown and entire root surface) is covered by the radiograph. Remember, the roots of all teeth are very long. This is especially true of canine teeth, which are longer than you think. Always err on the side of having the film too far in the mouth to ensure you do not cut off the root apexes. The film should be placed as near as possible to the object (generally touching the tooth and gingiva) to minimize distortion.

1 Scan X: All Pro Imaging
Step 3: Positioning the beam head

There are two major techniques for positioning the beam head in veterinary patients. Both of these techniques are used daily in veterinary practice.

Parallel technique: This is where the film is placed parallel to the object being radiographed and perpendicular to the beam. This is how standard (large) films are taken. This gives the most accurate image. Unfortunately this is only useful in the lower cheek teeth in the dog and cat. This is due to the fact that these patients don’t have an arched palate. The film cannot be placed parallel to the tooth roots because of the palate’s interference. Therefore this technique is not always possible.

Bisecting Angle Technique: This is the most common type of dental radiograph taken in veterinary patients. This uses the theory of equilateral triangles to create an image that accurately represents the tooth in question. To utilize this technique, the film is placed as parallel as possible to the tooth root. Then the angle between the tooth root and film is measured. This angle is cut in half (bisected) and the beam placed perpendicular to this angle. This gives the most accurate representation of the root.

If this angle is incorrect, the radiographic image will be distorted. This is because the x-ray beam will create an image that is longer or shorter than the object imaged. The best way to visualize this is to think of a building and the sun. The building will create a 90 degree (right) angle to the ground. The bisecting angle in this case is 45 degrees to the ground.

Early and late in the day, the sun is at an acute angle to the building and casts a long shadow. In radiology this occurs when the angle of the beam to the object is too small and is known as elongation. At some point in the late morning and early afternoon, the sun is at a 45 degree angle to the building, which is the bisecting angle. This gives an accurate representation of the building height. As the sun continues up in the sky, the shadow shortens. This occurs in veterinary radiology when the angle is too great and is known as foreshortening. Finally, at noon, the sun is straight up from the building, which gives no shadow.

The “Simplified Technique” as developed by Dr. Tony Woodward does not utilize direct measurement of any angle, instead relying on approximate angles to create diagnostic images. There are only 3 angles used for all radiographs in this system 20, 45, and 90.

Mandibular premolars and molars are exposed at a 90 degree angle, maxillary premolars and molars at a 45-degree angle, and incisors and canines at a 20 degree angle.

To initiate any radiograph, place the film in the mouth and set the positioning indication device (PID) perpendicular to the film. For mandibular cheek teeth, this is the correct placement. For the maxillary premolars and molars, rotate the beam to a 45 degree angle. For the incisors and mandibular canines rotate 20 degrees. For the maxillary canines an additional rotation 20 degrees lateral is necessary to avoid superimposition of the first and second premolars.
Step 4: Setting the exposure
If you are using a machine where you set the exposure manually, you will need to set up a technique chart similar to one for a standard (large) unit. The good news is that there is only one variable that needs to be adjusted. If you are utilizing the computer controlled system, set the buttons for the species, size of the patient, and tooth to be imaged. If you have correctly set the machine and the image is incorrectly exposed, the easiest way to adjust is to change the f setting. By pressing this button, you will see the numbers go up on both sides. The one on the left is the f number and the one on the right is the exposure time. If you continue to press the button it will continue to increase the exposure until you reach 9 when it will markedly lower and the f number will go back to 1. If the radiograph is overexposed (too dark) lower the f number by 1. If it is underexposed (too light) increase the number by 1. Continue this process until you have the film that you want. Generally, the f number will be the same for all radiographs once you have discovered the correct setting for your machine start at that number in future sessions.

Step 5: Exposing the radiograph
Dental radiograph machines have a hand held switch to expose the radiograph. If it is possible, leave the room prior to exposing the radiograph. If it is not, stand at least 6 feet away at a 90 to 130 degree angle to the primary beam (meaning to the side or back of the tube head, not in front or behind). Once everything is set, press the button. It is important to remember, that these switches are “dead man's”. This means if you let up during the exposure, it will stop the production of x-ray beams. On a standard unit, this will make a light radiograph, on a computer controlled one it will give an error message and you will need to start over. Make sure you hold the button down until the machine stops beeping.

Step 6: Developing the radiograph
The most economical way to develop the radiograph is coffee cups filled with dental developing solutions in your darkroom. (Using chemicals other than products for dental radiology will result in inferior film quality) Although developing films in a darkroom can produce quality films, the use of a chair side developer has several distinct advantages.

1. The chair side developer also allows you to easily judge when development time is correct, and be able to evaluate your films in only 1-2 minutes.
2. The technician does not leave the room and can still monitor the patient.
3. The units take up very little space, minimize chemistry use, clean up easily and store quickly.

To develop films, begin by peeling back the covering layers from the film, taking care to handle the film only by the edges. Use a film clip to grasp the corner of the film and place it in the developer. When developing a size 4 film, make sure to immerse the entire film in the liquid to ensure that the whole film gets developed. Develop the film until an image is just visible (sight developing). Then rinse the film briefly in a water bath, and place the film in the fixer for one minute until partially fixed. The film may be evaluated at this time, but should be placed back in the fixer for an additional 10 minutes to ensure complete
fixation (archival quality). When completely fixed, the film becomes clear and will lose all traces of a greenish color. The film should then be thoroughly rinsed in running water or placed in a clean water bath for 10-15 minutes. This is followed by a final rinse to remove all traces of fixer. Be sure to remove the clip and rinse all film surfaces thoroughly. Traces of fixer remaining on a dental film give it a characteristic “slick” feel, therefore rinse the film under running water while gently rubbing the film between your fingers, for a few seconds, until the film does not feel slick. The film is then placed in drying clips overnight to dry. Make sure to dry the film completely to ensure that they do not stick together.

Be sure to change the solutions whenever the developing and fixation times seem to be slowing down. This will occur after you have developed and fixed around 20 smaller (#0 or #2) films, or 10-15 larger (#4) films. Use of exhausted chemistry results in poor image quality and hazy images.
Interpreting dental radiographs can be daunting, but it is very similar to interpreting a standard boney radiograph. The major difference is that dental radiographic changes are often more subtle. In addition, there are pathologic states that are unique to the oral cavity. Finally, there are several normal anatomic structures that may mimic pathologic changes. This lecture concentrates on the most common pathologies, which are illustrated by classic examples. Note that in practice, these lesions are often less obvious. The reader is directed to additional continuing education meetings to further their expertise. In addition, vetdentalrad.com is an excellent resource for questionable cases.

Determining which teeth were imaged:
The first step in radiographic interpretation is determining which teeth have been imaged. This requires not a firm knowledge of oral anatomy as well as the architecture of dental films. Digital systems with veterinary templates do not require this step as long as the images are properly placed (DO NOT ASSUME THIS WAS DONE CORRECTLY). If your system does not support a veterinary template, there is a mark on the image which is in a consistent location. Review the owner’s manual for instructions on its use.

The key to properly identifying the imaged teeth is the embossed dot, which is on one corner of the film. When exposing a radiograph, if the film is properly positioned, the convex surface will point towards the radiographic tube head. There is no way to expose a diagnostic radiograph with the film in backwards, due to the lead sheet on the back side of the film. Therefore, when interpreting the film, the embossed dot is facing out of the mouth.

First, place the dot towards you (this is done for you on most digital systems). This means you are looking at the teeth as if you are the beam.

Next, rotate the film so that the roots are in their natural position (up on maxillary and down on mandibular).

Canines and incisors: This orients the film so the right side of the mouth is on the left, and right side is on the left. This is like a VD abdomen radiograph.

Molars and Premolars: Ascertain mesial from distal. If the mesial side is on the left side of the film, it is a radiograph of the left side of the patient and vice versa for the right.
Normal radiographic anatomy:
There are numerous structures within the oral cavity that mimic pathologic states depending on the projection. Knowledge of normal radiographic anatomy will help avoid over interpretation.

Normal alveolar bone will appear gray and relatively uniform throughout the arcade. It is slightly more radiopaque “darker” than tooth roots. In addition, it appears slightly but regularly mottled. Alveolar bone should completely fill the area between the roots (furcation) and end at the cementoenamel junction (CEJ). The root canals should all be the same width; allowing for differences in the diameters of the root. There should be no radiolucent areas in teeth or bone. A regular thin dark line (periodontal ligament) should be visualized around the roots.

There are several normal anatomic findings that are commonly misinterpreted in dental images as pathologic. On radiographs of the mandibular cheek teeth, a thick, horizontal radiolucent line courses parallel to and just coronal to the ventral cortex of the mandible. This is the mandibular canal. In addition, there are three circular radiolucent areas seen in the area of the apices of the first three premolars, which are the mental foramina (rostral, middle, and caudal). On rostral mandibular views, a radiolucent line will be present between the central incisors. This is the fibrocartilagenous mandibular symphysis. In the rostral maxillary area: there are paired radiolucent areas distal to the intermediate incisors, which are the palate fissures. Finally, a significant widening of the periodontal ligament at the apex of the cuspids teeth is normal. This may appear to be a periapical lesion, but is differentiated from pathology because it is very regular and v-shaped, as opposed to irregular and round. Any questionable areas should be evaluated by exposing a comparative view. A suspicious periapical lucency (especially in the area of the mandibular premolars) should be evaluated with an additional film exposed at a slightly different angle (in the horizontal or vertical plane). If the lucency is still centered on the apex, it is likely real. If the lesion moves off the apex or disappears, it is an artifact. Suspect changes in the diameter of the root canal of a tooth should be compared against surrounding as well as contralateral teeth. Surrounding teeth can be seen on the same film with the “lesion”. The contralateral view should be taken at the same angle as the original. It is important to note that root canals are not exact cylinders (especially cuspids). A lateral view may have a much different canal width than a V/D view.

Periodontal disease:
Periodontal bone loss results from the combination of bacterial induced inflammation and host response creating osteoclastic resorption of bone. This resorption will result in crestal bone loss to a level below the cementoenamel junction. This decrease in bone height may also create furcational exposure. Horizontal bone loss is the most common pattern in veterinary patients is horizontal. This appears as generalized bone loss of a similar level across all or part of an arcade. The other pattern is angular (vertical) bone loss. The radiographic appearance of angular bone loss is one area of recession below the surrounding bone. The surrounding bone may be normal or be undergoing
vertical bone loss. Therefore it is common to have a combination of the two types in the same arcade.

Bone loss does not become radiographically evident until 30-50% of the mineralization is lost. Therefore, radiographic findings will always underestimate bone loss. In addition, bone loss on only one surface (i.e. lingual, palatal, or facial) may be hidden by superimposition of bone or tooth. This may resulting in a non-diagnosed bony pocket. Always interpret radiographs in light of the complete oral examination findings.

Endodontic disease:

Endodontic disease may be demonstrated radiographically in several ways. An individual tooth may have one, some, or all of the different changes listed below. However, only one need be present to establish a presumptive diagnosis of endodontic disease. Radiographic changes can be broken into two major classifications: 1) changes in the surrounding bone, or 2) changes within the tooth itself.

Bony changes: The classic and most obvious finding is periradicular rarefaction. This appears as a radiolucent area surrounding the apex of a root. On rare occasions, this may also be seen mid-root, but these will virtually always be associated with periapical disease. Other, more subtle changes include a widened periodontal ligament, a thickened or discontinuous lamina dura, or even periradicular opacities. It is important to be aware of superimposed lucencies which are artifactual. These structures (i.e. mental foramina) can be imaged over an apex and falsely appear as osseous rarefaction. There are several clues that superimposed lucencies are artifactual. First, superimposed artifacts are typically seen on only one root, whereas it is very rare to find a true periapical lesion on only one root of a multi-rooted tooth. In addition, artifacts tend to be regular in appearance, whereas true periapical lesions are ragged. If any area is in question, it is best to expose an additional film with a slightly different angle. If a periradicular lucency is still centered over the apex, it is likely real and not an artifact.

Tooth changes: The most common change in endodontic disease within the tooth itself is a root canal with a different diameter. As a tooth matures, secondary dentin production will cause a decrease in canal width. When a tooth becomes non-vital, this development stops secondary to the death of the odontoblasts. Consequently, non-vital teeth have wider root canals than the surrounding vital teeth. Conversely, on rare occasions, pulpitis may result in increased dentin production, and create an endodontically diseased tooth with a smaller root canal. This is especially common in teeth that are also periodontally diseased. This could potentially lead to a misdiagnosis of the endodontically diseased tooth as healthy and vice versa with the contralateral tooth. Hence it is important to evaluate the adjacent teeth as well as the contralateral.

Width discrepancy can be compared to any tooth (taking the size of tooth into consideration) but it is most accurate is to compare to the contralateral tooth. Endodontic disease may also be manifested radiographically as internal resorption. This results from osteoclastic activity within the root canal system due to pulpitis. These changes create an irregular, enlarged region within an area of the root canal system. Finally, external root resorption can be seen with
endodontic disease. It will appear as a defect of the external surface of the root, generally accompanied by a loss of bone in the area. External resorption most commonly occurs at the apex in companion animals and is quite common in cats with chronic endodontic disease.

Feline Tooth Resorption (TR's)

TRs are the result of odontoclastic destruction of feline teeth, and are classified as either type 1 or type 2. In type 1 there is no replacement by bone, whereas in type 2 there is replacement of the lost root structure by bone.

TRs are very common in our feline patients. Studies have reported up to a 70% incidence in felines over 6 years of age! The etiology at this point is unknown. They are not bacterial in nature, although in some cases the inflammation which activated the odontoclasts may have been bacterial in nature. There are numerous theories; however none have been proven at this time. Osteoclastic resorption will generally begin at the cervical line of the tooth and progress at varying rates until in some cases no identifiable tooth remains.

Type 1 TRs are typically associated with inflammation such as gingivostomatitis or periodontal disease. Thus, they are commonly associated with periodontal bone loss on dental radiographs. In these cases, it is believed that the soft tissue inflammation activated the osteoclasts. The teeth will have normal root density in some areas and a well defined periodontal space. In addition, there is often a definable root canal in the intact part of the tooth. This type will have significant resorption of the teeth and tooth roots that is not replaced by bone.

Type 2 TRs are usually associated with only localized gingivitis on oral exam, in contrast to the more severe inflammation due to periodontal disease or gingivostomatitis seen with type 1. In these cases, the gingival inflammation is secondary to the TR. The radiographic appearance is that of teeth which have a different radiographic density as compared to normal teeth, as they have undergone significant replacement resorption. Findings will include areas with no discernable periodontal ligament space (dentoalveolar ankylosis) or root canal. In the late stages, there will be little to no discernable root structure (ghost roots). In these cases, the lost root structure will be replaced by bone.

The importance of dental radiography in TR cases cannot be overstated. Type 1 lesions typically retain a viable root canal system, and will result in pain and endodontic infection if the roots are not completely extracted. However, the concurrent presence of a normal periodontal ligament makes these extractions routine. With type 2 lesions, there are areas lacking a normal periodontal ligament (ankylosis) which also demonstrate varying degrees of root resorption, which makes extraction by conventional elevation difficult to impossible. The continued resorption in type 2 teeth is the basis for crown amputation therapy. It is this authors opinion that teeth with an identifiable root canal on dental radiographs MUST be extracted completely, while teeth with no discernable root canal may be treated with crown amputation. If there is any question, always err on the side of complete extraction.
Neoplasia:
Neoplasia is defined as the abnormal growth of cells that is not responsive to normal growth control. Neoplasms can be further classified by their biologic behavior as benign or malignant.

Benign masses: Most benign neoplastic growths will have no boney involvement on dental radiographs. If bone involvement does occur with a benign growth it will be expansive, resulting in the bone “pulling away” from the advancing tumor leaving a decalcified soft tissue filled space in the tumor site. Bony margins are usually distinct. Finally, this expansive growth will typically result in tooth movement.

Cysts: Cystic structures will appear as a radiolucent area with smooth bony edges. Similar to other benign growths, they grow by expansion and thus displace the other structures (eg teeth). Dentigerous cysts are typically seen as a radiolucent structure centered on the crown of an unerupted tooth.

Malignant neoplasia: Malignant oral neoplasms typically invade bone early in the course of disease, resulting in irregular, ragged bone destruction. Initially, the bone will have a mottled “moth eaten” appearance, but radiographs late in the disease course will reveal a complete loss of bone (the teeth will appear to float in space). If the cortex is involved, an irregular periosteal reaction will be seen.

Histopathologic testing is always necessary for accurate diagnosis of oral masses since a variety of benign or malignant tumors appear radiographically similar. In addition, osteomyelitis can create the same radiographic findings as malignant tumors. Finally, aggressive tumors will show no bone involvement early in the course of disease. The prudent practitioner will note the type and extent of bony involvement (if any) on the histopathology request form (and may include copies of the radiographs and pictures) to aid the pathologist. It is key to interpret the histopathology result in light of the radiographic findings. A diagnosis of a malignancy without boney involvement should be questioned prior to initiating definitive therapy such as aggressive surgery, radiation therapy, or chemotherapy. Conversely, a benign tumor diagnosis with significant bony reaction should be further investigated prior to assuming that the patient is safe. Additional diagnostic tests in questionable cases include complete blood panel, urinalysis, bacterial and/or fungal culture, as well as fungal serology.

Retained tooth roots:
Persistent tooth roots following extraction attempts are a common occurrence in veterinary medicine. In the vast majority of cases, there are no outward clinical signs, however the patient suffers regardless. In rare cases, the retained root may abscess, resulting in significant morbidity to the patient and possible legal action from the client.

Dental radiographs must be exposed following all extractions. Regardless of the appearance of complete extraction, there is still a possibility of retained roots or other pathology. Therefore, post-operative radiographs are critical in all cases. In addition, they will serve as a legal document in cases of complications.